簡易檢索 / 詳目顯示

研究生: 古育銘
Ku, Yu-Ming
論文名稱: 攝取不同劑量咖啡因對半蹲舉運動表現之影響
Effects of different doses of caffeine on half-squat performance
指導教授: 鄭景峰
Cheng, Ching-Feng
口試委員: 鄭景峰
Cheng, Ching-Feng
何仁育
Ho, Jen-Yu
郭育瑄
Kuo, Yu-Hsuan
口試日期: 2025/01/14
學位類別: 碩士
Master
系所名稱: 運動競技學系
Department of Athletic Performance
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 82
中文關鍵詞: 增補劑營養補充品阻力運動訓練量
英文關鍵詞: ergogenic aid, nutritional supplement, resistance exercise, training volume
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202500350
論文種類: 學術論文
相關次數: 點閱:96下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目的:探討增補不同劑量咖啡因,對半蹲舉運動表現與動力學指標之影響。
    方法:招募12名有阻力訓練經驗男性。受試者於半蹲舉運動前60分鐘以隨機平衡次序之方式接受三種不同實驗處理,包括3 mg/kg咖啡因膠囊 (CAF3)、6 mg/kg咖啡因膠囊 (CAF6) 與安慰劑膠囊 (PLA)。在每次實驗處理後,受試者需在測力板上進行4組半蹲舉測驗,負荷設定為70% 1 RM (repetition maximum),並於第4組半蹲舉測驗中,要求受試者盡可能多地實施半蹲舉運動至衰竭。蒐集實驗過程前、中與後的運動自覺量強度 (rating of perceived exertion, RPE) 及疼痛自覺程度 (visual analog scale, VAS),並計算半蹲舉第4組的反覆次數和訓練量,以及計算每組力量、功率、速度的最大值與平均值,以及平均力量與速度的遞減率指標。
    結果:在半蹲舉測驗平均速度,CAF6顯著高於PLA (CAF6 vs. PLA, 第一組: 0.49 ± 0.06 vs. 0.46 ± 0.08 m/s, 第二組: 0.48 ± 0.08 vs. 0.45 ± 0.07 m/s, 第三組: 0.49 ± 0.06 vs. 0.44 ± 0.08 m/s, 第四組: 0.48 ± 0.07 vs. 0.44 ± 0.07 m/s, p < .05)。在第1至3組最大力量遞減率,CAF6顯著低於CAF3 (CAF6 vs. CAF3, 第一組: 3.90 ± 2.92 vs. 16.45 ± 16.15 %, 第二組: 3.53 ± 1.89 vs. 5.66 ± 6.77 %, 第三組: 3.64 ± 1.43 vs. 7.64 ± 8.98 %, p < .05)。在第1至3組最大功率遞減率,CAF6顯著低於CAF3 (CAF6 vs. CAF3, 第一組: 7.12 ± 2.09 vs. 19.15 ± 16.43 %, 第二組: 6.86 ± 2.54 vs. 8.87 ± 5.33 %, 第三組: 6.71 ± 1.88 vs. 12.42 ± 11.82 %, p < .05)。此外,在半蹲舉時的反覆次數、訓練量、力量、功率、最大速度、RPE和VAS,在3種處理之間均無顯著差異。
    結論:不同劑量咖啡因可能無法改善半蹲舉運動的反覆次數和訓練量,不過,6 mg/kg咖啡因可能提升半蹲舉的平均速度,並延緩最大力量與最大功率流失的效果。

    Purpose: To investigate the effect of different doses of caffeine on half-squat perfor-mance and kinetic variables.
    Methods: Twelve resistance-trained males performed half-squats under three conditions: 3 mg/kg caffeine capsules (CAF3), 6 mg/kg caffeine capsules (CAF6), and placebo (PLA) cap-sules, administered 60 minutes before exercise in a randomized order. Participants per-formed 4 sets of half-squat on the force platform with a load set at 70% of one repetition maximum. At the fourth set of half-squat, participants were asked to perform as many repeti-tions as possible until failure. The rating of perceived exertion (RPE) and visual analog scale (VAS) for muscle pain were measured before, during, and after each trial. The number of repetitions and exercise volume of the 4th set were calculated. The peak and mean force, ve-locity, power, and performance decrement scores of mean force and velocity were also cal-culated.
    Results: The average half-squat velocity in the CAF6 was significantly higher than in the PLA (CAF6 vs. PLA, SET1: 0.49 ± 0.06 vs. 0.46 ± 0.08 m/s, SET2: 0.48 ± 0.08 vs. 0.45 ± 0.07 m/s, SET3: 0.49 ± 0.06 vs. 0.44 ± 0.08 m/s, SET4: 0.48 ± 0.07 vs. 0.44 ± 0.07 m/s, p < .05). The decrement rate of maximum force in the 1st to 3rd sets was significantly lower in CAF6 compared to CAF3 (CAF6 vs. CAF3, SET1: 3.90 ± 2.92 vs. 16.45 ± 16.15 %, SET2: 3.53 ± 1.89 vs. 5.66 ± 6.77 %, SET3: 3.64 ± 1.43 vs. 7.64 ± 8.98 %, p < .05). Similarly, the decrement rate of maximum power in the 1st to 3rd sets was significantly lower in CAF6 compared to CAF3 (CAF6 vs. CAF3, SET1: 7.12 ± 2.09 vs. 19.15 ± 16.43 %, SET2: 6.86 ± 2.54 vs. 8.87 ± 5.33 %, SET3: 6.71 ± 1.88 vs. 12.42 ± 11.82 %, p < .05). However, no signifi-cant differences were found among treatments in repetitions, training volume, force, power, maximum velocity, RPE, and VAS.
    Conclusion: Different doses of caffeine might not improve half-squat repetitions and vol-ume, however, CAF6 might increase half-squat velocity and prevent the decline in maximal strength and power.

    第壹章 緒論1 第一節 前言1 第二節 研究目的4 第三節 研究假設4 第四節 研究範圍與限制5 第五節 研究重要性5 第六節 名詞操作性定義6 第貳章 文獻探討7 第一節 咖啡因增補對阻力運動表現之影響7 第二節 咖啡因增補對阻力訓練反覆次數之影響11 第三節 咖啡因增補對阻力運動動作速度之影響15 第四節 不同劑量咖啡因對阻力運動之影響17 第五節 文獻總結21 第參章 研究方法22 第一節 受試對象22 第二節 實驗日期與地點22 第三節 研究工具23 第四節 研究設計23 第五節 實驗方法與步驟24 第六節 資料處理與分析30 第七節 統計分析32 第肆章 結果33 第一節 受試者基本資料33 第二節 咖啡因對半蹲舉測驗反覆次數與訓練量之影響33 第三節 咖啡因對半蹲舉測驗動力學指標之影響35 第四節 咖啡因對血乳酸與自覺感受之影響42 第五節 咖啡因對副作用之影響46 第伍章 討論47 第一節 咖啡因 處理對半蹲舉測驗反覆次數與訓練量之影響47 第二節 咖啡因處理對半蹲舉測驗動力學相關參數之影響49 第三節 咖啡因 處理對血乳酸與自覺感受之影響52 第四節 咖啡因處理對副作用之影響54 第五節 結論與建議57 參考文獻58 附錄71 附錄一 咖啡因含量表71 附錄二 飲食記錄表74 附錄三 受試者須知75 附錄四 健康狀況調查表76 附錄五 受試者自願同意書77 附錄六 實驗紀錄表78

    林文煌 (1996)。咖啡因與運動能力。中華體育季刊,10(3),130-140。https://doi.org/10.6223/qcpe.1003.199612.2117
    Antonio, J., Newmire, D. E., Stout, J. R., Antonio, B., Gibbons, M., Lowery, L. M., Harper, J., Willoughby, D., Evans, C., Anderson. D., Goldstein, E., Rojas, J., Monsalves-Álvarez, M., Forbes, S. C., Gomez Lopez, J., Ziegenfuss, T., Moulding, B. D., Candow, D., Sagner, M., & Arent, S. M. (2024). Common questions and misconceptions about caffeine supplementation: What does the scientific evidence really show?. Journal of the International Society of Sports Nutrition, 21(1), 2323919. https://doi.org/10.1080/15502783.2024.2323919
    Arazi, H., Dehlavinejad, N., & Gholizadeh, R. (2016). The acute effect of caffeine supplementation on strength, repetition sustainability and work volume of novice bodybuilders. Turkish Journal of Kinesiology, 2(3), 43-48. https://dergipark.org.tr/en/pub/turkjkin/issue/26721/282640
    Arazi, H., Hoseinihaji, M., & Eghbali, E. (2016). The effects of different doses of caffeine on performance, rating of perceived exertion and pain perception in teenagers female karate athletes. Brazilian Journal of Pharmaceutical Sciences, 52, 685-692. https://doi.org/10.1590/S1984-82502016000400012
    Argus, C. K., Gill, N. D., Keogh, J. W., & Hopkins, W. G. (2014). Assessing the variation in the load that produces maximal upper-body power. Journal of Strength and Conditioning Research, 28(1), 240-244. https://doi.org/10.1519/JSC.0b013e318295d1c9
    Astorino, T. A., Martin, B. J., Schachtsiek, L., Wong, K., & Ng, K. (2011). Minimal effect of acute caffeine ingestion on intense resistance training performance. Journal of Strength and Conditioning Research, 25(6), 1752-1758. https://doi.org/10.1519/JSC.0b013e3181ddf6db
    Astorino, T. A., Rohmann, R. L., & Firth, K. (2008). Effect of caffeine ingestion on one-repetition maximum muscular strength. European Journal of Applied Physiology, 102(2), 127-132. https://doi.org/10.1007/s00421-007-0557-x
    Baechle, T. R., & Earle, R. W. (Eds.). (2008). Essentials of strength training and conditioning. Human kinetics.
    Bastos-Silva, V. J., Prestes, J., & Geraldes, A. A. R. (2019). Effect of carbohydrate mouth rinse on training load volume in resistance exercises. Journal of Strength and Conditioning Research, 33(6), 1653-1657. https://doi.org/10.1519/jsc.0000000000002092
    Baz-Valle, E., Fontes-Villalba, M., & Santos-Concejero, J. (2021). Total number of sets as a training volume quantification method for muscle hypertrophy: A systematic review. Journal of Strength and Conditioning Research, 35(3), 870-878. https://doi.org/10.1519/JSC.0000000000002776
    Beaumont, R., Cordery, P., Funnell, M., Mears, S., James, L., & Watson, P. (2017). Chronic ingestion of a low dose of caffeine induces tolerance to the performance benefits of caffeine. Journal of Sports Sciences, 35(19), 1920-1927. https://doi.org/10.1080/02640414.2016.1241421
    Beck, T. W., Housh, T. J., Schmidt, R. J., Johnson, G. O., Housh, D. J., Coburn, J. W., & Malek, M. H. (2006). The acute effects of a caffeine-containing supplement on strength, muscular endurance, and anaerobic capabilities. Journal of Strength and Conditioning Research, 20(3), 506-510. https://doi.org/10.1519/18285.1
    Behrens, M., Mau-Moeller, A., Weippert, M., Fuhrmann, J., Wegner, K., Skripitz, R., Bader, R., & Bruhn, S. (2015). Caffeine-induced increase in voluntary activation and strength of the quadriceps muscle during isometric, concentric and eccentric contractions. Scientific Reports, 5(1), 10209. https://doi.org/10.1038/srep10209
    Bell, D. G., & McLellan, T. M. (2002). Exercise endurance 1, 3, and 6 h after caffeine ingestion in caffeine users and nonusers. Journal of Applied Physiology, 93(4), 1227-1234. https://doi.org/10.1152/japplphysiol.00187.2002
    Berjisian, E., Naderi, A., Mojtahedi, S., Grgic, J., Ghahramani, M. H., Karayigit, R., Forbes, J, L., Amaro-Gahete, F, J., & Forbes, S. C. (2022). Are caffeine’s effects on resistance exercise and jumping performance moderated by training status?. Nutrients, 14(22), 4840. https://doi.org/10.3390/nu14224840
    Bowtell, J. L., Mohr, M., Fulford, J., Jackman, S. R., Ermidis, G., Krustrup, P., & Mileva, K. N. (2018). Improved exercise tolerance with caffeine is associated with modulation of both peripheral and central neural processes in human participants. Frontiers in Nutrition, 5, 6. https://doi.org/10.3389/fnut.2018.00006
    Brigatto, F. A., Lima, L. E. D. M., Germano, M. D., Aoki, M. S., Braz, T. V., & Lopes, C. R. (2022). High resistance-training volume enhances muscle thickness in resistance-trained men. Journal of Strength and Conditioning Research, 36(1), 22-30. https://doi.org/10.1519/jsc.0000000000003413
    Carroll, T. J., Riek, S., & Carson, R. G. (2001). Neural adaptations to resistance training. Sports Medicine, 31(12), 829-840. https://doi.org/10.2165/00007256-200131120-00001
    Childs, E., Hohoff, C., Deckert, J., Xu, K., Badner, J., & De Wit, H. (2008). Association between ADORA2A and DRD2 polymorphisms and caffeine-induced anxiety. Neuropsychopharmacology, 33(12), 2791-2800. https://doi.org/10.1038/npp.2008.17
    Clausen, T. (1996). Long-and short-term regulation of the Na+-K+-pump in skeletal muscle. Physiology, 11(1), 24-30. https://doi.org/10.1152/physiologyonline.1996.11.1.24
    Cole, K. J., Costill, D. L., Starling, R. D., Goodpaster, B. H., Trappe, S. W., & Fink, W. J. (1996). Effect of caffeine ingestion on perception of effort and subsequent work production. International Journal of Sport Nutrition and Exercise Metabolism, 6(1), 14–23. https://doi.org/10.1123/ijsn.6.1.14
    Colquhoun, R. J., Gai, C. M., Aguilar, D., Bove, D., Dolan, J., Vargas, A., Couvillion, K., Jenkins. N. D. M., & Campbell, B. I. (2018). Training volume, not frequency, indicative of maximal strength adaptations to resistance training. Journal of Strength and Conditioning Research, 32(5), 1207-1213. https://doi.org/10.1519/jsc.0000000000002414
    Cormie, P., McBride, J. M., & McCaulley, G. O. (2007). Validation of power measurement techniques in dynamic lower body resistance exercises. Journal of Applied Biomechanics, 23(2), 103-118. https://doi.org/10.1123/jab.23.2.103
    Davis, J. K., & Green, J. M. (2009). Caffeine and anaerobic performance: Ergogenic value and mechanisms of action. Sports Medicine, 39(10), 813-832. https://doi.org/10.2165/11317770-000000000-00000
    Davis, J. M., Zhao, Z., Stock, H. S., Mehl, K. A., Buggy, J., & Hand, G. A. (2003). Central nervous system effects of caffeine and adenosine on fatigue. American Journal of Physiology-Regulatory, Integrative & Comparative Physiology, 284(2), R399-R404. https://doi.org/10.1152/ajpregu.00386.2002
    de Salles Painelli, V., Teixeira, E. L., Tardone, B., Moreno, M., Morandini, J., Larrain, V. H., & Pires, F. O. (2021). Habitual caffeine consumption does not interfere with the acute caffeine supplementation effects on strength endurance and jumping performance in trained individuals. International Journal of Sport Nutrition and Exercise Metabolism, 31(4), 321-328. https://doi.org/10.1123/ijsnem.2020-0363
    de Souza, J. G., Del Coso, J., Fonseca, F. S., Silva, B. V. C., de Souza, D. B., da Silva Gianoni, R. L., Filip-Stachnik, A., Serrão, J. C., & Claudino, J. G. (2022). Risk or benefit? Side effects of caffeine supplementation in sport: A systematic review. European Journal of Nutrition, 61(8), 3823–3834. https://doi.org/10.1007/s00394-022-02874-3
    Degrange, T., Jackson, W., Williams, T., Rogers, R. R., Marshall, M., & Ballmann, C. (2019). Acute caffeine ingestion increases velocity and power in upper and lower body free-weight resistance exercises. International Journal of Exercise Science, 12(2), 1280-1289. https://doi.org/10.70252/ZCNL2726
    Del Coso, J., Salinero, J. J., González-Millán, C., Abián-Vicén, J., & Pérez-González, B. (2012). Dose response effects of a caffeine-containing energy drink on muscle performance: A repeated measures design. Journal of the International Society of Sports Nutrition, 9(1), 21. https://doi.org/10.1186/1550-2783-9-21
    Desbrow, B., & Leveritt, M. (2007). Well-trained endurance athletes’ knowledge, insight, and experience of caffeine use. International Journal of Sport Nutrition and Exercise Metabolism, 17(4), 328-339. https://doi.org/10.1123/ijsnem.17.4.328
    Desbrow, B., Biddulph, C., Devlin, B., Grant, G. D., Anoopkumar-Dukie, S., & Leveritt, M. D. (2012). The effects of different doses of caffeine on endurance cycling time trial performance. Journal of Sports Sciences, 30(2), 115-120. https://doi.org/10.1080/02640414.2011.632431
    Diaz-Lara, F. J., Del Coso, J., García, J. M., Portillo, L. J., Areces, F., & Abián-Vicén, J. (2016). Caffeine improves muscular performance in elite Brazilian Jiu-jitsu athletes. European Journal of Sport Science, 16(8), 1079-1086. https://doi.org/10.1080/17461391.2016.1143036
    Doherty, M., & Smith, P. M. (2005). Effects of caffeine ingestion on rating of perceived exertion during and after exercise: A meta‐analysis. Scandinavian Journal of Medicine & Science in Sports, 15(2), 69-78. https://doi.org/10.1111/j.1600-0838.2005.00445.x
    Duncan, M. J., Eyre, E., Grgic, J., & Tallis, J. (2019). The effect of acute caffeine ingestion on upper and lower body anaerobic exercise performance. European Journal of Sport Science, 19(10), 1359–1366. https://doi.org/10.1080/17461391.2019.1601261
    Duncan, M. J., Stanley, M., Parkhouse, N., Cook, K., & Smith, M. (2013). Acute caffeine ingestion enhances strength performance and reduces perceived exertion and muscle pain perception during resistance exercise. European Journal of Sport Science, 13(4), 392-399. https://doi.org/10.1080/17461391.2011.635811
    Ellis, M., Noon, M., Myers, T., & Clarke, N. (2019). Low doses of caffeine: Enhancement of physical performance in elite adolescent male soccer players. International Journal of Sports Physiology and Performance, 14(5), 569-575. https://doi.org/10.1123/ijspp.2018-0536
    Engels, H. J., & Haymes, E. M. (1992). Effects of caffeine ingestion on metabolic responses to prolonged walking in sedentary males. International Journal of Sport Nutrition and Exercise Metabolism, 2(4), 386–396. https://doi.org/10.1123/ijsn.2.4.386
    Ferreira, T. T., da Silva, J. V. F., & Bueno, N. B. (2021). Effects of caffeine supplementation on muscle endurance, maximum strength, and perceived exertion in adults submitted to strength training: A systematic review and meta-analyses. Critical Reviews in Food Science and Nutrition, 61(15), 2587-2600. https://doi.org/10.1080/10408398.2020.1781051
    Filip-Stachnik, A., Krzysztofik, M., Kaszuba, M., Leznicka, K., Kostrzewa, M., Del Coso, J., & Wilk, M. (2021). Effects of acute caffeine intake on power output and movement velocity during a multiple-set bench press exercise among mild caffeine users. Journal of Human Kinetics, 78(1), 219-228. https://doi.org/10.2478/hukin-2021-0044
    Foad, A. J., Beedie, C. J., & Coleman, D. A. (2008). Pharmacological and psychological effects of caffeine ingestion in 40-km cycling performance. Medicine & Science in Sports & Exercise, 40(1), 158. https://doi.org/10.1249/mss.0b013e3181593e02
    Fryer, M. W., & Neering, I. R. (1989). Actions of caffeine on fast‐and slow‐twitch muscles of the rat. The Journal of Physiology, 416(1), 435-454. https://doi.org/10.1113/jphysiol.1989.sp017770
    Ganio, M. S., Klau, J. F., Casa, D. J., Armstrong, L. E., & Maresh, C. M. (2009). Effect of caffeine on sport-specific endurance performance: A systematic review. Journal of Strength and Conditioning Research, 23(1), 315–324. https://doi.org/10.1519/JSC.0b013e31818b979a
    Giráldez-Costas, V., González-García, J., Lara, B., Del Coso, J., Wilk, M., & Salinero, J. J. (2020). Caffeine increases muscle performance during a bench press training session. Journal of Human Kinetics, 74(1), 185-193. https://doi.org/10.2478/hukin-2020-0024
    Glade, M. J. (2010). Caffeine-Not just a stimulant. Nutrition, 26(10), 932-938. https://doi.org/10.1016/j.nut.2010.08.004
    Glaister, M., Muniz-Pumares, D., Patterson, S. D., Foley, P., & McInnes, G. (2015). Caffeine supplementation and peak anaerobic power output. European Journal of Sport Science, 15(5), 400-406. https://doi.org/10.1080/17461391.2014.962619
    Goldstein, E. R., Ziegenfuss, T., Kalman, D., Kreider, R., Campbell, B., Wilborn, C., Taylor, L., Willoughby, D., Stout, J., Graves, B. S., Wildman, R., Ivy, J. L., Spano, M., Smith, A. E., & Antonio, J. (2010). International society of sports nutrition position stand: Caffeine and performance. Journal of the International Society of Sports Nutrition, 7(1), 1-15. https://doi.org/10.1186/1550-2783-7-5
    Graham, T. E. (2001). Caffeine and exercise: metabolism, endurance and performance. Sports Medicine, 31(11), 785-807. https://doi.org/10.2165/00007256-200131110-00002
    Graham, T. E., & Spriet, L. L. (1991). Performance and metabolic responses to a high caffeine dose during prolonged exercise. Journal of Applied Physiology, 71(6), 2292-2298. https://doi.org/10.1152/jappl.1991.71.6.2292
    Graham, T. E., & Spriet, L. L. (1995). Metabolic, catecholamine, and exercise performance responses to various doses of caffeine. Journal of Applied Physiology, 78(3), 867-874. https://doi.org/10.1152/jappl.1995.78.3.867
    Graham, T. E., Helge, J. W., MacLean, D. A., Kiens, B., & Richter, E. A. (2000). Caffeine ingestion does not alter carbohydrate or fat metabolism in human skeletal muscle during exercise. The Journal of Physiology, 529 Pt 3(Pt 3), 837–847. https://doi.org/10.1111/j.1469-7793.2000.00837.x
    Green, J. M., Wickwire, P. J., McLester, J. R., Gendle, S., Hudson, G., Pritchett, R. C., & Laurent, C. M. (2007). Effects of caffeine on repetitions to failure and ratings of perceived exertion during resistance training. International Journal of Sports Physiology and Performance, 2(3), 250-259. https://doi.org/10.1123/ijspp.2.3.250
    Green, M. S., Martin, T. D., & Corona, B. T. (2018). Effect of caffeine supplementation on quadriceps performance after eccentric exercise. Journal of Strength and Conditioning Research, 32(10), 2863–2871. https://doi.org/10.1519/JSC.0000000000002530
    Greer, F., McLean, C., & Graham, T. E. (1998). Caffeine, performance, and metabolism during repeated Wingate exercise tests. Journal of Applied Physiology, 85(4), 1502-1508. https://doi.org/10.1152/jappl.1998.85.4.1502
    Grgic, J. (2018). Caffeine ingestion enhances Wingate performance: A meta-analysis. European Journal of Sport Science, 18(2), 219-225. https://doi.org/10.1080/17461391.2017.1394371
    Grgic, J. (2021). Effects of caffeine on resistance exercise: A review of recent research. Sports Medicine, 51(11), 2281-2298. https://doi.org/10.1007/s40279-021-01521-x
    Grgic, J. (2022). Exploring the minimum ergogenic dose of caffeine on resistance exercise performance: A meta-analytical approach. Nutrition, 111604. https://doi.org/10.1016/j.nut.2022.111604
    Grgic, J., & Mikulic, P. (2017). Caffeine ingestion acutely enhances muscular strength and power but not muscular endurance in resistance-trained men. European Journal of Sport Science, 17(8), 1029-1036. https://doi.org/10.1080/17461391.2017.1330362
    Grgic, J., & Mikulic, P. (2021). Acute effects of caffeine supplementation on resistance exercise, jumping, and Wingate performance: No influence of habitual caffeine intake. European Journal of Sport Science, 21(8), 1165-1175. https://doi.org/10.1080/17461391.2020.1817155
    Grgic, J., & Mikulic, P. (2022). Effects of caffeine on rate of force development: A meta‐analysis. Scandinavian Journal of Medicine & Science in Sports, 32(4), 644-653. https://doi.org/10.1111/sms.14109
    Grgic, J., & Pickering, C. (2019). The effects of caffeine ingestion on isokinetic muscular strength: A meta-analysis. Journal of Science and Medicine in Sport, 22(3), 353-360. https://doi.org/10.1016/j.jsams.2018.08.016
    Grgic, J., Grgic, I., Pickering, C., Schoenfeld, B. J., Bishop, D. J., & Pedisic, Z. (2020). Wake up and smell the coffee: Caffeine supplementation and exercise performance—an umbrella review of 21 published meta-analyses. British Journal of Sports Medicine, 54(11), 681-688. http://dx.doi.org/10.1136/bjsports-2018-100278
    Grgic, J., Pickering, C., Bishop, D. J., Schoenfeld, B. J., Mikulic, P., & Pedisic, Z. (2020). CYP1A2 genotype and acute effects of caffeine on resistance exercise, jumping, and sprinting performance. Journal of the International Society of Sports Nutrition, 17(1), 1-11. https://doi.org/10.1186/s12970-020-00349-6
    Grgic, J., Sabol, F., Venier, S., Mikulic, I., Bratkovic, N., Schoenfeld, B. J., Pickering, C., Bishop, D. J., Pedisic, Z., & Mikulic, P. (2019). What dose of caffeine to use: acute effects of 3 doses of caffeine on muscle endurance and strength. International Journal of Sports Physiology and Performance, 15(4), 470-477. https://doi.org/10.1123/ijspp.2019-0433
    Grgic, J., Trexler, E. T., Lazinica, B., & Pedisic, Z. (2018). Effects of caffeine intake on muscle strength and power: A systematic review and meta-analysis. Journal of the International Society of Sports Nutrition, 15(1), 11. https://doi.org/10.1186/s12970-018-0216-0
    Guest, N. S., VanDusseldorp, T. A., Nelson, M. T., Grgic, J., Schoenfeld, B. J., Jenkins, N. D. M., Arent, S. M., Antonio, J., Stout, J. R., Trexler, E. T., Smith-Ryan, A. E., Goldstein, E. R., Kalman, D. S., & Campbell, B. I. (2021). International society of sports nutrition position stand: Caffeine and exercise performance. Journal of the International Society of Sports Nutrition, 18(1), 1. https://doi.org/10.1186/s12970-020-00383-4
    Guest, N., Corey, P., Vescovi, J., & El-Sohemy, A. (2018). Caffeine, CYP1A2 genotype, and endurance performance in athletes. Medicine & Science in Sports & Exercise, 50(8), 1570-1578. https://doi.org/10.1249/MSS.0000000000001596
    Haskell, C. F., Kennedy, D. O., Wesnes, K. A., & Scholey, A. B. (2005). Cognitive and mood improvements of caffeine in habitual consumers and habitual non-consumers of caffeine. Psychopharmacology, 179(4), 813-825. https://doi.org/10.1007/s00213-004-2104-3
    Hewlett, P., & Smith, A. (2006). Correlates of daily caffeine consumption. Appetite, 46(1), 97-99. https://doi.org/10.1016/j.appet.2005.10.004
    Hoffman, J. (2006). Norms for Fitness, Performance, and Health. Champaign, IL: Human Kinetics.
    Hurley, C. F., Hatfield, D. L., & Riebe, D. A. (2013). The effect of caffeine ingestion on delayed onset muscle soreness. Journal of Strength and Conditioning Research, 27(11), 3101–3109. https://doi.org/10.1519/JSC.0b013e3182a99477
    Jacobs, I., Pasternak, H., & Bell, D. G. (2003). Effects of ephedrine, caffeine, and their combination on muscular endurance. Medicine & Science in Sports & Exercise, 35(6), 987-994. https://doi.org/10.1249/01.MSS.0000069916.49903.70
    Kawamori, N., & Haff, G. G. (2004). The optimal training load for the development of muscular power. Journal of Strength and Conditioning Research, 18(3), 675-684. https://doi.org/10.1519/1533-4287(2004)18<675:TOTLFT>2.0.CO;2
    Kell, R. T., Bell, G., & Quinney, A. (2001). Musculoskeletal fitness, health outcomes and quality of life. Sports Medicine, 31(12), 863-873. https://doi.org/10.2165/00007256-200131120-00003
    Kirk, B. J., Trajano, G. S., Pulverenti, T. S., Rowe, G., & Blazevich, A. J. (2019). Neuromuscular factors contributing to reductions in muscle force after repeated, high-intensity muscular efforts. Frontiers in Physiology, 10, 783. https://doi.org/10.3389/fphys.2019.00783
    Laurent, C. M., Green, J. M., Bishop, P. A., Sjökvist, J., Schumacker, R. E., Richardson, M. T., & Curtner-Smith, M. (2011). A practical approach to monitoring recovery: Development of a perceived recovery status scale. Journal of Strength and Conditioning Research, 25(3), 620-628. https://doi.org/10.1519/JSC.0b013e3181c69ec6
    Lavender, A. P., & Nosaka, K. (2006). Changes in fluctuation of isometric force following eccentric and concentric exercise of the elbow flexors. European Journal of Applied Physiology, 96, 235-240. https://doi.org/10.1007/s00421-005-0069-5
    Mahdavi, R., Daneghian, S., Jafari, A., & Homayouni, A. (2015). Effect of acute caffeine supplementation on anaerobic power and blood lactate levels in female athletes. Journal of Caffeine Research, 5(2), 83-87. https://doi.org/10.1089/jcr.2014.0034
    Martinopoulou, K., Donti, O., Sands, W. A., Terzis, G., & Bogdanis, G. C. (2022). Evaluation of the isometric and dynamic rates of force development in multi-joint muscle actions. Journal of Human Kinetics, 81, 135-148. doi:10.2478/hukin-2021-0130
    Mitsumoto, H., DeBoer, G. E., Bunge, G., Andrish, J. T., Tetzlaff, J. E., & Cruse, R. P. (1990). Fiber-type specific caffeine sensitivities in normal human skinned muscle fibers. Anesthesiology, 72(1), 50-54. https://doi.org/10.1097/00000542-199001000-00010
    Mora-Rodríguez, R., Pallarés, J. G., López-Samanes, Á., Ortega, J. F., & Fernández-Elías, V. E. (2012). Caffeine ingestion reverses the circadian rhythm effects on neuromuscular performance in highly resistance-trained men. PLoS One, 7(4), e33807. https://doi.org/10.1371/journal.pone.0033807
    Morton, R. W., Oikawa, S. Y., Wavell, C. G., Mazara, N., McGlory, C., Quadrilatero, J., Baechler, B. L., Baker, S. K., & Phillips, S. M. (2016). Neither load nor systemic hormones determine resistance training-mediated hypertrophy or strength gains in resistance-trained young men. Journal of Applied Physiology, 121(1), 129-138. https://doi.org/10.1152/japplphysiol.00154.2016
    Pagala, M. K., & Taylor, S. R. (1998). Imaging caffeine-induced Ca2+ transients in individual fast-twitch and slow-twitch rat skeletal muscle fibers. American Journal of Physiology-Cell Physiology, 274(3), C623-C632. https://doi.org/10.1152/ajpcell.1998.274.3.C623
    Pallares, J. G., Fernandez-Elias, V. E., Ortega, J. F., Munoz, G., Munoz-Guerra, J., & Mora-Rodriguez, R. (2013). Neuromuscular responses to incremental caffeine doses: Performance and side effects. Medicine & Science in Sports & Exercise, 45(11), 2184-2192. https://doi.org/10.1249/MSS.0b013e31829a6672
    Paluska, S. A. (2003). Caffeine and exercise. Current Sports Medicine Reports, 2(4), 213-219. https://doi.org/10.1249/00149619-200308000-00008
    Park, N. D., Maresca, R. D., McKibans, K. I., Morgan, D. R., Allen, T. S., & Warren, G. L. (2008). Caffeines enhancement of maximal voluntary strength and activation in uninjured but not injured muscle. International Journal of Sport Nutrition and Exercise Metabolism, 18(6), 639–652. https://doi.org/10.1123/ijsnem.18.6.639
    Pasman, W. J., Van Baak, M. A., Jeukendrup, A. E., & De Haan, A. (1995). The effect of different dosages of caffeine on endurance performance time. International Journal of Sports Medicine, 16(4), 225-230. https://doi.org/10.1055/s-2007-972996
    Perrin, D. H. (1993). Isokinetic Exercise & Assessment. Human kinetics.
    Pethick, J., Winter, S. L., & Burnley, M. (2017). Caffeine ingestion attenuates fatigue-induced loss of muscle torque complexity. Medicine & Science in Sports & Exercise, 50(2), 236-245. https://doi.org/10.1249/MSS.0000000000001441
    Pickering, C., & Grgic, J. (2019). Caffeine and exercise: What next?. Sports Medicine, 49, 1007-1030. https://doi.org/10.1007/s40279-019-01101-0
    Pickering, C., & Kiely, J. (2019). Are low doses of caffeine as ergogenic as higher doses? A critical review highlighting the need for comparison with current best practice in caffeine research. Nutrition, 67, 110535. https://doi.org/10.1016/j.nut.2019.06.016
    Polito, M. D., Grandolfi, K., & De Souza, D. B. (2019). Caffeine and resistance exercise: The effects of two caffeine doses and the influence of individual perception of caffeine. European Journal of Sport Science, 19(10), 1342-1348. https://doi.org/10.1080/17461391.2019.1596166
    Polito, M. D., Souza, D. B., Casonatto, J., & Farinatti, P. (2016). Acute effect of caffeine consumption on isotonic muscular strength and endurance: A systematic review and meta-analysis. Science & Sports, 31(3), 119-128. https://doi.org/10.1016/j.scispo.2016.01.006
    Ralston, G. W., Kilgore, L., Wyatt, F. B., & Baker, J. S. (2017). The effect of weekly set volume on strength gain: A meta-analysis. Sports Medicine, 47(12), 2585-2601. https://doi.org/10.1007/s40279-017-0762-7
    Raya-Gonzalez, J., Rendo-Urteaga, T., Domínguez, R., Castillo, D., Rodriguez-Fernandez, A., & Grgic, J. (2020). Acute effects of caffeine supplementation on movement velocity in resistance exercise: A systematic review and meta-analysis. Sports Medicine, 50, 717-729. https://doi.org/10.1007/s40279-019-01211-9
    Sabol, F., Grgic, J., & Mikulic, P. (2019). The effects of 3 different doses of caffeine on jumping and throwing performance: A randomized, double-blind, crossover study. International Journal of Sports Physiology and Performance, 14(9), 1170-1177. https://doi.org/10.1123/ijspp.2018-0884
    San Juan, A. F., López-Samanes, Á., Jodra, P., Valenzuela, P. L., Rueda, J., Veiga-Herreros, P., Pérez-López, A., & Domínguez, R. (2019). Caffeine supplementation improves anaerobic performance and neuromuscular efficiency and fatigue in Olympic-level boxers. Nutrients, 11(9), 2120. https://doi.org/10.3390/nu11092120
    Schneiker, K. T., Bishop, D., Dawson, B., & Hackett, L. P. (2006). Effects of caffeine on prolonged intermittent-sprint ability in team-sport athletes. Medicine & Science in Sports & Exercise, 38(3), 578-585. https://doi.org/10.1249/01.mss.0000188449.18968.62
    Schoenfeld, B. J., Grgic, J., Ogborn, D., & Krieger, J. W. (2017). Strength and hypertrophy adaptations between low-vs. high-load resistance training: A systematic review and meta-analysis. Journal of Strength and Conditioning Research, 31(12), 3508-3523. https://doi.org/10.1519/JSC.0000000000002200
    Shen, J. G., Brooks, M. B., Cincotta, J., & Manjourides, J. D. (2019). Establishing a relationship between the effect of caffeine and duration of endurance athletic time trial events: A systematic review and meta-analysis. Journal of Science and Medicine in Sport, 22(2), 232-238. https://doi.org/10.1016/j.jsams.2018.07.022.
    Sökmen, B., Armstrong, L. E., Kraemer, W. J., Casa, D. J., Dias, J. C., Judelson, D. A., & Maresh, C. M. (2008). Caffeine use in sports: Considerations for the athlete. Journal of Strength and Conditioning Research, 22(3), 978-986. https://doi.org/10.1519/JSC.0b013e3181660cec
    Solsona, R., Pavlin, L., Bernardi, H., & Sanchez, A. M. (2021). Molecular regulation of skeletal muscle growth and organelle biosynthesis: practical recommendations for exercise training. International Journal of Molecular Sciences, 22(5), 2741. https://doi.org/10.3390/ijms22052741
    Southward, K., Rutherfurd-Markwick, K. J., & Ali, A. (2018). The effect of acute caffeine ingestion on endurance performance: A systematic review and meta–analysis. Sports Medicine, 48, 1913-1928. https://doi.org/10.1007/s40279-018-0939-8
    Souza, D. B., Duncan, M., & Polito, M. D. (2019). Improvement of lower-body resistance-exercise performance with blood-flow restriction following acute caffeine intake. International Journal of Sports Physiology and Performance, 14(2), 216-221. https://doi.org/10.1123/ijspp.2018-0224
    Spriet, L. L. (2014). Exercise and sport performance with low doses of caffeine. Sports Medicine, 2(44), 175-184. https://doi.org/10.1007/s40279-014-0257-8
    Spriet, L., MacLean, D. A., Dyck, D. J., Hultman, E., Cederblad, G., & Graham, T. E. (1992). Caffeine ingestion and muscle metabolism during prolonged exercise in humans. American Journal of Physiology-Endocrinology and Metabolism, 262(6), E891-E898. https://doi.org/10.1152/ajpendo.1992.262.6.E891
    Stadheim, H. K., Spencer, M., Olsen, R., & Jensen, J. (2014). Caffeine and performance over consecutive days of simulated competition. Medicine & Science in Sports & Exercise, 46(9), 1787–1796. https://doi.org/10.1249/MSS.0000000000000288
    Suchomel, T. J., Nimphius, S., & Stone, M. H. (2016). The importance of muscular strength in athletic performance. Sports Medicine, 46(10), 1419-1449. https://doi.org/10.1007/s40279-016-0486-0
    Tallis, J., Duncan, M. J., & James, R. S. (2015). What can isolated skeletal muscle experiments tell us about the effects of caffeine on exercise performance?. British Journal of Pharmacology, 172(15), 3703-3713. https://doi.org/10.1111/bph.13187
    Tallis, J., & Yavuz, H. C. (2018). The effects of low and moderate doses of caffeine supplementation on upper and lower body maximal voluntary concentric and eccentric muscle force. Applied Physiology, Nutrition, and Metabolism, 43(3), 274-281. https://doi.org/10.1139/apnm-2017-0370
    Tarnopolsky, M. A. (2008). Effect of caffeine on the neuromuscular system—potential as an ergogenic aid. Applied Physiology, Nutrition, and Metabolism, 33(6), 1284-1289. https://doi.org/10.1139/H08-121
    Timmins, T. D., & Saunders, D. H. (2014). Effect of caffeine ingestion on maximal voluntary contraction strength in upper-and lower-body muscle groups. Journal of Strength and Conditioning Research, 28(11), 3239-3244. https://doi.org/10.1519/JSC.0000000000000447
    Tucker, M. A., Hargreaves, J. M., Clarke, J. C., Dale, D. L., & Blackwell, G. J. (2013). The effect of caffeine on maximal oxygen uptake and vertical jump performance in male basketball players. Journal of Strength and Conditioning Research, 27(2), 382-387. https://doi.org/10.1519/JSC.0b013e31825922aa
    Tufano, J. J., Conlon, J. A., Nimphius, S., Brown, L. E., Seitz, L. B., Williamson, B. D., & Haff, G. G. (2016). Maintenance of velocity and power with cluster sets during high-volume back squats. International Journal of Sports Physiology and Performance, 11(7), 885-892. https://doi.org/10.1123/ijspp.2015-0602
    Vieira, J. G., Sardeli, A. V., Dias, M. R., Filho, J. E., Campos, Y., Sant'Ana, L., Leitao, L., Reis, V., Wilk, M., Novaes, J., & Vianna, J. (2022). Effects of resistance training to muscle failure on acute fatigue: A systematic review and meta-analysis. Sports Medicine, 52(5), 1103-1125. https://doi.org/10.1007/s40279-021-01602-x
    Warren, G. L., Park, N. D., Maresca, R. D., McKibans, K. I., & Millard-Stafford, M. L. (2010). Effect of caffeine ingestion on muscular strength and endurance: A meta-analysis. Medicine & Science in Sports & Exercise, 42(7), 1375-1387. https://doi.org/10.1249/MSS.0b013e3181cabbd8
    Wikoff, D., Welsh, B. T., Henderson, R., Brorby, G. P., Britt, J., Myers, E., Goldberge, J., Lieberman, H, R., O'Brien, C., Peck, J., Tenenbein, M., Weaver, C., Harvey, S., Urban,J., & Doepker, C. (2017). Systematic review of the potential adverse effects of caffeine consumption in healthy adults, pregnant women, adolescents, and children. Food and Chemical Toxicology, 109, 585-648. https://doi.org/10.1016/j.fct.2017.04.002
    Wilk, M., Filip, A., Krzysztofik, M., Gepfert, M., Zajac, A., & Del Coso, J. (2020). Acute caffeine intake enhances mean power output and bar velocity during the bench press throw in athletes habituated to caffeine. Nutrients, 12(2), 406. https://doi.org/10.3390/nu12020406
    Wilk, M., Filip, A., Krzysztofik, M., Maszczyk, A., & Zajac, A. (2019b). The acute effect of various doses of caffeine on power output and velocity during the bench press exercise among athletes habitually using caffeine. Nutrients, 11(7), 1465. https://doi.org/10.3390/nu11071465
    Wilk, M., Krzysztofik, M., Maszczyk, A., Chycki, J., & Zajac, A. (2019a). The acute effects of caffeine intake on time under tension and power generated during the bench press movement. Journal of the International Society of Sports Nutrition, 16(1), 8. https://doi.org/10.1186/s12970-019-0275-x
    Williams, A. D., Cribb, P. J., Cooke, M. B., & Hayes, A. (2008). The effect of ephedra and caffeine on maximal strength and power in resistance-trained athletes. Journal of Strength and Conditioning Research, 22(2), 464-470. https://doi.org/10.1519/JSC.0b013e3181660320
    Woolf, K., Bidwell, W. K., & Carlson, A. G. (2008). The effect of caffeine as an ergogenic aid in anaerobic exercise. International Journal of Sport Nutrition and Exercise Metabolism, 18(4), 412-429. https://doi.org/10.1123/ijsnem.18.4.412
    Yang, A., Palmer, A. A., & De Wit, H. (2010). Genetics of caffeine consumption and responses to caffeine. Psychopharmacology, 211, 245-257. https://doi.org/10.1007/s00213-010-1900-1
    Zbinden-Foncea, H., Rada, I., Gomez, J., Kokaly, M., Stellingwerff, T., Deldicque, L., & Peñailillo, L. (2018). Effects of caffeine on countermovement-jump performance variables in elite male volleyball players. International Journal of Sports Physiology and Performance, 13(2), 145-150. https://doi.org/10.1123/ijspp.2016-0705

    無法下載圖示 電子全文延後公開
    2030/01/01
    QR CODE