研究生: |
張耀明 |
---|---|
論文名稱: |
在損壞超立方體系統的容錯重組研究 On Fault-tolerant Reconfiguration of Faulty Hypercube |
指導教授: | 葉耀明 |
學位類別: |
碩士 Master |
系所名稱: |
資訊教育研究所 Graduate Institute of Information and Computer Education |
畢業學年度: | 87 |
語文別: | 中文 |
論文頁數: | 54 |
中文關鍵詞: | 超立方體 、超立方體代數 、容錯 、主要次立方體 、重組 、超立方體函數 、Q對應圖 、同步信息傳送 |
英文關鍵詞: | hypercube, hypercube algebra, faulty tolerance, prime subcubes, reconfiguration, hypercube function, Q-map, synchronized message passing |
論文種類: | 學術論文 |
相關次數: | 點閱:216 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
大部分的研究學者在描述超立方體系統時都會使用節點位址表示法(address notation),然而,這種表示法有一些缺點,如較沒有邏輯上的意義或不方便作運算等。我們於本篇論文中提出一個全新的超立方體表示法—超立方體代數(hypercube algebra)。由於它與布林代數的相似性非常高,在我們定義了它的運算子、運算元及公設與定理之後,我們可以更輕易的使用它來幫助我們表示與處理超立方體的相關問題。
此外,在較大型的超立方體系統中,元件(節點與鍊結)錯誤的機率也相對的提高,如何保留可用的完整超立方體來有效的達到效能緩慢降低(graceful de-gradation)的目標。在本論文中我們也針對主要次立方體的判定(prime subcubes determination)問題提出三個解決的演算法,分別為超立方體函數(hypercube function)、Q-map(Q對應圖)以及同步訊息傳送(SMP)演算法。而這三種演算法也都是源自於超立方體代數的概念。
Most of previous researches use node address as the notation for hypercube systems. However, this notation has many shortages such as: too trivial, complicated symbolic representation, no logical structural meaning. This thesis presents a new algebra system, called hypercube algebra, which can be used as a logical notation for hypercubes as well as for incomplete hypercubes. Due to the similarity between hypercube algebra and Boolean algebra, cubeterms (i.e. similar to minterm in Boolean algebra), sum and product operations (i.e., similar to sum and product in Boolean algebra), and certain axioms are defined for hypercube algebra. Using hypercube algebra, a simple hypercube expression can carry many topological properties in a hypercube system such as prime cubes, node availability and so on.
On the other hand, the probability of fault occurrence can be high for a large hypercube system. It is often desire to reconfigure the faulty hypercube that operate in a gracefully degraded manner as to retain many nonfaulty nodes and links as possible, by supporting the execution of parallel algorithms in smaller nonfaulty subcubes. Therefor the subcube determination problem is essential that the time for executing a parallel algorithm trends to depend on the dimension of the assigned subcube. Here, we also present three different methods which are hypercube function, Q-map, and synchronized message passing (SMP) method for determining subcube according different uses and situations. The basic ideas of these three methods are from the hypercube algebra.
【1.】 J. Squire and S. M. Palais, "Programming and design considerations of a highly parallel computer," in Proc. AFIP Spring Joint Comput. Conf., vol. 23, pp. 395-400, 1963.
【2.】 Y. Saad and M. H. Schultz, "Topological Properties of Hypercubes," IEEE Trans. Computers, vol. 37, no. 7, pp. 867-872, July 1988.
【3.】 NCUBE Corporation, "nCUBE-2E Processor Manual". NCUBE Corporation, 1992.
【4.】 H.-L. Chen, N.-F. Tseng. "Subcube Determination in Faulty Hypercubes." IEEE Trans. Computers, vol.46, no.8, pp.871-879, Aug 1997.
【5.】 H. P. Katseff, "Incomplete Hypercube," IEEE Trans. Computers, vol.37, no.5, pp.604-608, May 1988.
【6.】 N.-F. Tzeng and G. Lin, "Efficient Determination of Maximal Incomplete Subcubes in Hypercubes with Faults," IEEE Trans. Computers, vol.45, no.11, pp.1303-1308, Nov 1996.
【7.】 M. Morris Mano. "Digital Design 2nd Edition." Prentice-Hall, Englewood Cliffs, NJ, pp.36-110, 1991.
【8.】 J. P. Hayes. "Introduction to Digital Logic Design." Addison-Wesley, Reading, MA, pp.279-330, 1993.
【9.】 J. Bruck, R. Cypher, and C.-T. Ho, "Fault-Tolerant Meshes and Hypercubes with Minimal Numbers of Spares," IEEE Trans. Computers, vol.41, no.5, pp.1,089-1,104, Sep 1993.
【10.】 H. J. Burch and F. Ercal. "A Fast Algorithm For Complete Subcube Recognition." Proc. of IEEE 1997 Int*l Symp. Parallel Architectures, Algorithms and Networks, pp.85-90, 1997.
【11.】 H.-L. Chen, N.-F. Tseng. "A Boolean Expression-Based Approach for Maximum Incomplete Subcube Identification in Faulty Hypercubes." IEEE Trans. Parallel and Distributed System, vol.8, no.11, pp.1171-1183, Nov 1997.
【12.】 J. Bruck, R. Cypher, and D. Soroker, "Tolerating faults in hypercubes using subcube partitioning," IEEE Trans. Computers, vol.41, no.5, pp.599-605, May. 1992.